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1 Solve the inequality�2x − 5� > 3�2x + 1�. [4]

2 Using the substitutionu = 3x, solve the equation 3x + 32x = 33x giving your answer correct to
3 significant figures. [5]

3 The angles1 and& lie between 0Å and 180Å, and are such that

tan�1 − &� = 3 and tan1 + tan& = 1.

Find the possible values of1 and&. [6]

4 The equationx3 − x2 − 6 = 0 has one real root, denoted by!.

(i) Find by calculation the pair of consecutive integers between which! lies. [2]

(ii) Show that, if a sequence of values given by the iterative formula

xn+1 =

_P
xn +

6
xn

Q

converges, then it converges to!. [2]

(iii) Use this iterative formula to determine! correct to 3 decimal places. Give the result of each
iteration to 5 decimal places. [3]

5 The equation of a curve isy = e−2x tanx, for 0≤ x < 1
20.

(i) Obtain an expression for
dy
dx

and show that it can be written in the form e−2x�a + b tanx�2, where

a andb are constants. [5]

(ii) Explain why the gradient of the curve is never negative. [1]

(iii) Find the value ofx for which the gradient is least. [1]

6 The polynomial 8x3 + ax2 + bx − 1, wherea andb are constants, is denoted by p�x�. It is given that
�x + 1� is a factor of p�x� and that when p�x� is divided by�2x + 1� the remainder is 1.

(i) Find the values ofa andb. [5]

(ii) Whena andb have these values, factorise p�x� completely. [3]
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7 The pointsA, B andC have position vectors, relative to the originO, given by

−−→
OA =

`
1
2
0

a
,

−−→
OB =

`
3
0
1

a
and

−−→
OC =

`
1
1
4

a
.

The planem is perpendicular toAB and contains the pointC.

(i) Find a vector equation for the line passing throughA andB. [2]

(ii) Obtain the equation of the planem, giving your answer in the formax + by + cÏ = d. [2]

(iii) The line throughA andB intersects the planem at the pointN. Find the position vector ofN
and show thatCN =

��13�. [5]

8 The variablesx and1 satisfy the differential equation

dx
d1

= �x + 2�sin221,

and it is given thatx = 0 when1 = 0. Solve the differential equation and calculate the value of x when
1 = 1

40, giving your answer correct to 3 significant figures. [9]

9 The complex number 3− i is denoted byu. Its complex conjugate is denoted byu* .

(i) On an Argand diagram with originO, show the pointsA, B andC representing the complex
numbersu, u* andu* − u respectively. What type of quadrilateral isOABC? [4]

(ii) Showing your working and without using a calculator, express
u*

u
in the formx + iy, wherex

andy are real. [3]

(iii) By considering the argument of
u*

u
, prove that

tan−1�3
4

�
= 2 tan−1�1

3

�
. �3�

10

x

y

O

M

R

1 p

The diagram shows the curvey =
x2

1+ x3 for x ≥ 0, and its maximum pointM. The shaded regionR

is enclosed by the curve, thex-axis and the linesx = 1 andx = p.

(i) Find the exact value of thex-coordinate ofM. [4]

(ii) Calculate the value ofp for which the area ofR is equal to 1. Give your answer correct to
3 significant figures. [6]
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